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Exploratory analysis of (modern) data sets

Assume a table with n individuals described by p features/variables

° genetics: variant j in genome I
* genomics: gene j in cell i
ecology: species j in site j

* image: pixel j in image i

° etc.

nxp ij

Questions

Look for patterns or structures to summarize the data by

Challenges

* Large (n and p grows) and high dimensional (n grows but < p)

* Redundancy many variables may carry the same information

* Unsupervised: we don’t (necessary) know what we are looking for
* Discrete: measures with counts are as common as with intensity
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Dimensionality curse
Theorem (Folks theorem)

Letxy,...,x, be in the p-hypercube with i.i.d. coordinates. Then,

logn

p /2 (max |x; — x|, — min |x; — x],) = 0+ O

~> When p is large, all the points are almost equidistant

sampling distribution ' Affymetrix expression array 1| Independent Gaussian

L ~» Hopefully, the data
E 5 are not really
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Dimension reduction: general goals

Main objective: find a low-dimensional representation that captures
the “essence” of (high-dimensional) data

Application in Machine Learning

Preprocessing, Regularization
* Compression, denoising, anomaly detection
* Reduce overfitting in supervised learning

Application in Statistics/Data analysis

Better understanding of the data
* descriptive/exploratory methods
* visualization (difficult to plot and interpret > 3d!)

See Chapter 20 in Murphy (2022) for a nice, recent introduction and Chapter
14 in Hastie et al. (2009) for reference.
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Example in genetics
Genetics variant in European population

500, 000 variants (Single Nucleotide Polymorphism) for 3000 individuals
* SNP: 90 % of human genetic variations
* coded as 0, 1 or 2 (# allels different against pop. reference)

Summarized with 2 features'

* an extremely strong
structure between
individuals
("clustering”)

* avery simple subspace
where it is obvious
("dimension
reduction”)

B Tsource: Nature “Gene Mirror Geography Within Europe”, 2008 6/75



Example in genomics
Genome-wide cell biology with single-cell RNAseq data
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Figure 1: Successful t-SNE visualizations of sc-RNAseq data
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Example in Image: MNIST

Famous database of 60,000 labeled handwritten digits (28 x 28 images)

Figure 2: Data Samples
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UMAP 2-dimensional visualization

Obtained via

https://projector.tensorflow.org/, try it!
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Dimension reduction: problem setup
Dimension Reduction Map

* Original data : {xq,...,x,} € R?
* Low dimensional data: {z1,...,z,} € R, g < p
* Space R? of possibly high dimension: n < p

Construct a map @ from R? into a R? with ¢ < p:
R > RY,q < p
x> P(x) =z

~» How should we design/construct ®?

Criterion Form of the map ®
* Geometrical approach * Linear or non-linear?
* Reconstruction error * interpretability and versatility?
* Relationship preservation * high or low computational resource?
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@ Background: Geometric view of PCA
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Cloud of observation in R? and Inertia

Individuals in the variable space R?

Cloud X is centered around® % = Yi'; x;/n

X1 — X Xy — 5(1 Xip — X,

c _ _ -
X =x—x Xij — X; Xip — Xp
X — X Xnj — X; Xop — X

“empirical mean, barycentrum, center of inertia

Total Inertia It as a measure of information

<«\/’L»

//// ;m.a
D—_’

Figure 3: Example in R?

Distances to the center of the cloud o the total empirical variance

BIP—‘

=1 j=1

~» Good representation has large inertia (much variability)

n p
Z Z(xlj - ’_Cj)z Z dist? (x;,%) = ZV(X]) trace( )
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Geometric view in a nutshell

Consider collection of orthogonal axes (with dimension =1), then

IT = IAI + IAZ + -+ IAP

PCA is matrix factorisation (Hotelling 1933)

iZVAVT, V:(vl Vo, ... vp), Azdiag(/ll,...,?tp)

V are known as the loadings

Interpretation in R?

V describes a new orthogonal basis and a rotation of data in this basis

A O
V1 1
IA{ >

>

I
Ap

~> PCA is an appropriate rotation on axes that maximizes the variance

NN
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Unifying view of variables and individuals

In the new basis {vq, ..., vp}, coordinates of i (a.k.a. scores) are
¢ =(x-%)'V=XV, ¢eR

In the variable space R", new variables (factors) are formed by linear
combinations of the orginal variables: the principal components (PC)

p
fi = Z ij(X] — J_Cj) =Xy, fLeR?

j=1
The matrix of PC connects individual coordinates to latent factors:
¢/
CT
PC=XxV=(f f, .. f,)=]|"
8

~> Everything can be interpreted on a single plot, called the biplot

D
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Reconstruction formula

Recall that F = (fy, ..., f},) is the matrix of Principal components. Then,

* f = X} for projection on axis k
* F = X°V for all axis.

Using orthogonality of V, we get back the original data as follows, without
loss (VT performs the inverse rotation of V):

X =FV'

We obtain an approximation X¢ (compression) of the data X¢ by
considering a subset & of PC, typically & =1,...,q with g < p.

vC T _ w¢C T
X —FqVq —XVqVq

~> This is a rank-g approximation of X (captured by the first q axes).

14/75
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Single-Cell data analysed with PCA
Toy single-cell RNA data set (https://github.com/LuyiTian/sc_mixology/)

The dataset scRNA contains the counts of the 500 most varying transcripts
(tens of thousands) in the mixtures of 5 cell lines for a total of 3918 cells in
human liver (obtained with standard 10x scRNAseq Chromium protocol).

KRT81 AKR1B10 LCN2 AKR1C2 ALDH1A1 AGR2 AKR1C3 GPX2
Lib90_00000 6 2 43 4 2 4 3 0
Lib90_00001 38 16 175 30 8 19 5 25
Lib90_00002 5 6 3 3 1 0 3 4
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Figure 4: raw counts
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Figure 5: log/total-counts normalization
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Single-Cell data analysed with PCA

Raw data

Dim2 (12%)

Biplot (50 most contributing genes)

o
I
'
'

~10-

_20-

~30-

Lib90_00002
T

-75

Lib90_00010
T

Li b90700006
Libi900000026

Libg0 B aman
Lib90, 000 000EBPI0AA
O o0, bonss

Lib90_00020
T

£iB96,86631

Lib90_98R00

-25
Dim1 (18.7%)

Lib90_00308

Groups

E A549

H1975
E H2228
H838
HCCs27

16/75



Single-Cell data analysis with PCA

Normalized data

Dim?2 (14.3%)

Biplot (50 most contributing genes)
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MNIST data analysed with PCA

Compression/projection

Project 5 samples on the first {1, 2, 10, 20, 100, 784} axes
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Beyond PCA and linear methods

Limitations
Robust but,

* badly shaped for complex geometries (like multiscale properties)
* Fails with Count or Skew data (hidden Gaussian assumption)

Ideas
* Modify the model by playing with the reconstruction error
* Gain in versatility with probabilistic/model-based approaches
* Focus on relationship preservation to keep local characteristics
* Go non-linear by transforming the input space or amending the map

®:RPF 5> RY

Challenges

* tradeoff between interpretability and versatility
* tradeoff between high or low computational resource

ﬁg 19/75
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® Reconstruction error approach
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Reconstruction error approach: principle

Find maps ® and ® in a given family (e.g, linear, constraint on parameters,
etc.), minimizing an error between x and x = ®(d(x))

* Distance between X and X, e.g, sum of squares:

SSUXX) =[x - X

p= Y I — d@)|
i=1

* Divergence between distributions px and ﬁX of X; and X,-

. ) Px,
Dy (pox) =- pri 10g<ﬁA )

X;

* Log-likelihood of a parametric model py, with X = f():

—log pg(X) = — Z log pe(X;)

i=1 21/75



Another interpretation of PCA
PCA model

Let V,; be a p x g matrix whose columns are of q orthonormal vectors.

d(x) = V;IF(X —p =z x=0(z)=p+ Vyz.

~» Model with Linear assumption + ortho-normality constraints

PCA reconstruction error

peR? F e,

minimize i H(Xi — ) - VqV;]'—(Xi _ ;1)"2 _ (minim'ze ”XC - FqVqT"]z:)
V€04 = qu@p,:

Solution (explicit)

* pis the empirical mean, V, eigenvectors of the empirical covariance

* In practice: SVD of the centered matrix X¢ = UquV:?r = FqV;]r

@ 22/75



Non-negative Matrix Factorization (sraand bhilion 2005)

Assume that X contains only non-negative entries (i.e. > 0).

Model: Linearity of ® plus non-negativity constraints:

X ~ XVq V;IF, S.C. Fq,Vq has non-negative entries.
——

Fq

* Least-squares loss:
X' = arg min |x - FVTH;,

FeM (R, )ng
Vel (Ry)pq

* Poisson likelihood for X;; with intensity Agj = (FqV;]r)ij > 0:

Xpoisson = arg max Z xij log(/lg-) - /13
FE%(]R+ )n,q iaj
VE.%(IR+)p,q
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Ke rneI'PCA (Schélkopf, Smola, and Miiller 1998)

Principle: non linear transformation of x prior to linear PCA

@ Project the data into a higher space where it is linearly separable
® Apply PCA to the transformed data

A

Figure 6: Transformation ¥ : x — ¥(x) (illustration in presence of existing labels)

Model

Assume a non linear transformation ¥(x;) where ¥ : R? — R", then
perform PCA, with V an x q orthonormal matrix

d(x) = V;—‘I’(x - =z
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Choice of the transformation

All relationships are described in terms of scalar products between (x;, x;/):

K = k(x1,%x;) = (P(x);, ¥(x1)) = ¥(x;)"¥(x),

where the kernel K is a symmetric positive definite function.

Some common kernels

Polynormial: k(x;,xy) = (X,TXi’ + c)d
Gaussian: k(x;,x7) = exp Hxl x,/ I
Laplacian kernel: k(x;,xy) = exp _"Xi;Xi/ I

~» Kernel PCA suffers from the choice of the Kernel

AN/
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Other methods

Linear models with other constraints

Let V be a p x g matrix and z € R

q
x = O(z) :p+ZZjVj =p+Vgz
j=1
Apply other constraints on V and or the factor/representation z
* V sparse, possibly orthogonal: sparse PCA
°z sparse Dictionary learning
.« (2, 2 ) independent : Independent Component Anaysis

~» optimize square-loss HX - )A("i to fit p, V,z
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MNIST: original

Digit-0 Digit-4

.
Digit-1 Digit-3 Digit-1 Digit-4 Digit-3
Digit-5 Digit-3 Digit-6 Digit-1 Digit-7

Figure 7: Original data: Subsample of 2,000 labeled handwritten digits
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MNIST: PCA compression

Digit-4

A f,-"

Digit-1 Digit-3 Digit-1

=

|

—

Digit-5 Digit-3 Digit-6

Figure 8: PCA with 40 components
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MNIST: NMF compression

Digit-1 Digit-3 Digit-1 Digit-4 Digit-3
n .

Digit-5 Digit-3 Digit-6 Digit-1 Digit-7

Figure 9: NMF with 40 components
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MNIST: kernel-PCA compression

Digit-0 Digit-4 Digit-1 Digit-9

Digit-1 Digit-3 Digit-1 Digit-4 Digit-3

Digit-5 Digit-3 Digit-6 Digit-1 Digit-7

Figure 10: Kernel-PCA with linear kernel and 40 components
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MNIST: ICA compression

Digit-0 Digit-4

/

Digit-1

Digit-1

Digit-5 Digit-3 Digit-6 Digit-1 Digit-7

Figure 11: ICA
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MNIST: dictionnary learning

Digit-0

F

-

Digit-1 Digit-3 Digit-1 Digit-4 Digit-3

' d
1- . ¥

Digit-5 Digit-3 Digit-6 Digit-1 Digit-7

e
EHE

Figure 12: Dictionnary Learning with 25 components
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Code using sklearn

import pandas as pd
import numpy as np
from sklearn.decomposition import PCA, NMF, KernelPCA, FastICA, MiniBatchDictionaryLearnir

mnist = pd.read_csv('data/mnist_sample.csv')
labels = mnist.iloc[:,0]
digits = mnist.iloc[:,1:mnist.shape[1]]

## PCA

pca = PCA(n_components=40, random_state=0, whiten=True)
pca.fit(digits)

digits_PCA = pca.inverse_transform(pca.transform(digits))

## NMF

nmf = NMF(n_components=40, random_state=0)
nmf.fit(digits)

digits_NMF = nmf.inverse_transform(nmf.transform(digits))

## Kernel-PCA

kpca = KernelPCA(n_components=40, kernel='linear', random_state=0, fit_inverse_transform=]
kpca.fit(digits)

digits_kPCA = kpca.inverse_transform(kpca.transform(digits))

E%ﬂ . 33/75



Outline

O Generative models
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Probabilistic Gaussian PCA (Tipping and Bishop 1999)

Generative model

pPCA is a special factor model with parameter 8 = (C,0):

latent space Z; iid. Z;~ N(04]1y)
observation space  Xj|Z; indep. X|Z; ~ / (p+ CZ, 0'21,,)

By direct integration?, the marginal distribution of the observation is

po(X;) = J po(XilZ)) p(2))dzZ; = ¥ (%), T =CCT +0%,
R

q

~» rank-g decomposition of the covariance matrix + noise.

%easy since everything is Gaussian
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Estimation

Criterion: negative log-likelihood

n
= Y log pp(X;) = log[Z +tr ('), == (x; — %)(x; — %)

i=1

S |-
-

Maximum likelihood estimator

)1/2 2 1

)
cme=v, (Ag-61,) "7, e2=—— ) X Z=VAV'

Latent position: posterior distribution

Z:|X; ~ N (STICT(X; - %).5716%), s=(CTC+5L)
When o2 — 0, E(Z;|X;) = orthogonal projection in the latent space.
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Estimation: alternative

Expectation-Maximization

With Z(p) = —E ,(log(p)) the entropy of p,

log pp(X) = Ellog pg(X, Z) | X; 0)] + 7 [ pp(Z | X; 0)]

EM requires to evaluate (some moments of) py(Z | X; 6)
* E-step: evaluate Q(0]0") = E(log (X, W;0)X;0")
* M-step: update 6 by maximizing Q(6]6”)

EM for pPCA
* E-step: update the latente position means E(Z|X)
* M-step: update the model parameters C, o

On-going: Fast JAX implementation by Hugo Gangloff, mixture of pPCA
with Pierre Barbillon and MsC intern Pierre Brand
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PCA for counts: poisson lognormal PCA

Generative Model (Chiquet, Mariadassou, and Robin 2018)

latent space Z; iid. Z;~ H(041)
observation space  Xj|Z; indep. X|Z; ~ P (exp{u+ C'Z})

Estimation: Issues

* The marginal distribution is hard to compute, even numerically

p
Po(X,) = jR 11 po(X)1%) po(z)dz,
p j=1

~» no direct MLE possible
* Posterior distribution of Z; has no close form
~» no genuine application of EM possible
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Variational inference (Chiquet, Mariadassou, and Robin 2021)
Variational approximation (Blei, Kucukelbir, and McAuliffe 2017)

* Use a proxy gy, of pg(Z|X) minimizing a divergence in a class @

Q¢(Z)* = arg grélg Dk1. (q(Z), p(Z]Y)), Dgr(p.q) = [log QEZ;

* maximize the ELBO (Evidence Lower BOund)

J(6,9) = log pg(Y) — KL[qy(Z)|lpo(ZY)] = Ey [log pp(Y, Z)] + # [qy(Z)]

Variational EM for Poisson-lognormal PCA (PLN-PCA)

Consider @ the class of diagonal multivariate Gaussian distributions.
The ELBO J(0,¥) hat close-form and is bi-concave.

* E-step: solve in i for given 6

* M-step: solve in 8 for given ¢/

39/75
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Model selection and Visualization for PLN-PCA

Selection of number of components (rank k)

Use likelihood lower bound in information criteia, e.g,

k = arg maxvBIC,  with vBIC, = JB. p) - % p(d + k) log(n)

Visualization: non-nested subspaces (# Gaussian PCA)

For the selected dimension k, compute the estimated latent positions
E4(Z;) and perform PCA

Goodness of fit: deviance based criterion
For £ = log P(X; A%)) the Poisson likelihood,

€ — € . ) (k)
Ri=——p with ;" =exp (Bz™). A =1,
max 0
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Poisson-lognormal PCA for the scRNA data set

Model selection criteria
Higher is better

o
—~3e+06 ——
—4e+06
criterion
g —o— BIC
g -5e+06 - ICL
—o— loglik
—6e+06
~7e+061 L L L I
0 10 20 30 40
rank
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Poisson-lognormal PCA for the scRNA data set

Biplot (50 most contributing genes)
30- Lib90_03644 :

20-

DIm2 (22.9%)
o
I

1§b80001956
. 3

-10-

-20-

Dim1 (25.7%)

20

30

Groups

[@] Asa0
[A] Ho75
[m] 2228
He3s

HCC827
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Variational Auto-Encoders (kingma and Welling 2013)
Highly non-linear model

Find ® and ® with two neural-networks, controlling the error.

n
eX,X) = Z ”Xi - fiD(CI)(xi))”z + regularization(®, ®)
i=1

output
layer

reconstructed count matrix &

encoder decoder
hidden layers hidden layers

Figure 13: Figure by Hugo Gangloff
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Variational Auto-Encoders

Decoder: Generative model

p@(zi) = /V(O, Iq)s

X,Z;) = Z; X:|Z;), with
P, 20) = po(Z)pp(XilZy), wit po(X;|Z;) cond. likelihood.

Encoder: Variational Inference model

The encoder approximate the posterior distribution with gy, v =1{m, o’k

ay(ZiIX)) = N (p,071y) = po(ZifX;)

Optimization/training

Maximize a lower bound of the marginal log py(X) (a.k.a the ELBO):

log pg(X;) > &y (X) = B (z/x,) [log po(XiZ;)] = Di 1. (qy (Zil X1l po(Z:)

(’Q 44/75



Variational Auto-Encoders

Likelihoods relevent for count data

* Data scaled to [0,1] + Continuous Bernoulli (CB) likelihood (Wang
and Gu 20138)

* (Zero Inflated) Negative Binomial (ZINB) likelihood (Dony et al. 2020)

* (Zero Inflated) Poisson likelihood (tried this with Hugo Gangloff)

Let A € (R})? and p € [0, 1]? be the outputs of the decoder,

p Poiss
117+ O e Consl). 5y =0,
P@(X|Z): p] ,0] Pg m,nl’‘n ij

=1 (1- Pj)Pgmss(xijMn): x5 > 0.

Promising works and questions

* Grgnbech et al. (2020): Gaussian Mixture VAE

* Seninge et al. (2021): Semi-supervised VA

* Us: Connexion with traditional variational inference

* Us: Use as block in wider model-based approches
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Variational Auto-Encoders on scRNA data®

* encoder dimensions: [256, 128, 64]
* decoder dimensions: [64, 128, 256]
* ADAM with learning rate = Te-3

Negative-Binomial distribution

cell_type
A549
H1975
H2228
H838
HCC827

-2 -1 0 1 2 3

Figure 14: Negative Binomial

*based on code by Hugo Gangloff

Figure 15: Zero-Inflated Negative Binomial
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Variational Auto-Encoders on scRNA data*

* encoder dimensions: [256, 128, 64]
* decoder dimensions: [64, 128, 256]
* ADAM with learning rate = Te-3

RS

Poisson distribution

cell_type cell_type

® As49 e As549

e H1975 ® H1975
31 @ H2228 3{ @ H2228

e Hs38 e H838
21 @ Hces27, & ® Hccsz27

14 ® APy
.
e o N
o
a1 . ol
L]
.

N e N
-3 I A I L 5]
. g et ™

]
—4 -3 -2 -1 ] 1 2 -3 -2 -1 o 1 2 3 4

Figure 16: Poisson

*based on code by Hugo Gangloff

Figure 17: Zero-Inflated Poisson
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@ Preserving pairwise relations
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Preserving pairwise relations: principle

Consider an n x n (dis)similarity matrix associated to x; € R”, measuring
pairwise relations % (s, "), using one among

 distances,

* kernels,

* inner products,

* probability distributions.

Goal: find z; € R? while preserving the (dis)similarities in the latent space

Preserve local properties

Find a map @ from R? — R? such that

R(xj,xp) ~ R'(2;,2y7)

~» preserve £ both in high and low dimensional spaces to catch complex
geometries

d;] 49/75



NN

Multidimensional scaling

a.k.a Principale Coordinates Analysis

Classical Multidimensional Scalings
Preserve similarities in terms inner product:

2
StreSSCMDS(zi) = Z ((x,- - Il)T(Xi - ll) - Z,TZi’) 8

i#i’

Metric Multidimensional Scalings

Remarking that cMDS amount to preserve dissimilarities in terms of
Euclidean distance, use

2
Stress(zy, ..., z,) = Z (dip =z — z )",
=i’

~» Generalize to other dissimilarities/distances or stress functions
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Some Embedding methods

lsomap (Balasubramanian and Schwartz 2002)

* Build a k-nearest neighbor graph with adjacency matrix W
* Weight edges by Wy = |x; — x|

* Compute the shortest path distance

* Embeds the distance with MDS.

Laplacian Eigenmaps (Belkin and Niyogi 2003)

* Build a k-nearest neighbor graph with adjacency matrix W

* Weight edges with Gaussian kernel Wy = exp(|x; — x|%/c?)

* Compute the graph Laplacian L = D — W with D diagonal with
degrees

* Embeddings are obtained with the first eigenvectors associated to
positive eigenvalues of L.
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Classical embeddings on scRNA data set’

o As49
10079 o Hi975
o 228
o He3s

o HCCB27

-50

-100

-150  -100 50 o 50 100 150

Figure 19: Isomap

o asao
00010 o e

o 228

o He3s

o Hccs27
0.0005

0.0000

~0.0005

~0.0010

~0.00075-0.00050-0.00025 0.00000 0.00025 0.00050 0.00075

Figure 20: Laplacian Eigenmap

*using sklearn.manifold

RS
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StOChaStiC Neighbor Embeddlng (SNE) (Hinton and Roweis 2002)
High dimensional space

Let (xy, ..., Xy) be the original points in R”, and measure similarities by

exp(=Ix; — x[*/267)
Y gesi exp(=lxx — x,12/267)

* preserves relations with close neighbors
* 0; adjusts to local densities (neighborhood of i)

pij = (pji + pyj)/2n,  with pj; =

Perplexity

A smoothed effective number of neighbors:

n
Perp(p) = 25, H(p) == pjilog, p
=1

~» 0; found by binary search to match a user-defined perplexity for p;
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tSNE and Student / Cauchy kernels (maaten and Hinton 2008)

Similarities in the low dimension space

Let (zq, ..., z,) be the points in the the low-dimensional space R1=2

exp(—[z; — z;[?)
Yiezi exp(=lzx — z;?)
(1 + [z — 2™
Yki(l+ 2z — 2[5

~» t-SNE robustifies Gaussian kernel by using Student(1) (Cauchy) kernels

(SNE) ¢y =

Optimization

Criterion — Kullback-Leibler between p and q : C(z) = }.;; KL(pj}, q;j)
Algorithm - adaptive stochastic gradient initialized by (0, €];)
Initiatization - reduce original data with PCA then initialized by .#'(0, €1,)
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Empirical properties of tSNE (1)

Effect of Hyperparameters : Perplexity

Wl
By v &0 &
T, i
3 %
wld,
“pa v
Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50
Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000

tSNE does not account for heteroscedasticity

’ -

o

o e
- .
o %
v ~ ¢
" %
-
Original Perplexity: 2 Perplexity: § Perplexity: 30 Perplexity: 50
Step: 5000 Step: 5000 Step: 5000 Step: 5,000

Perplexity: 100
Step: 5000

Perplexity: 100
Step: 5000

https://distill.pub/2016/misread-tsne/
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RS

Empirical properties of tSNE (2)

tSNE does not account for between-cluster distance

50 points

L

Original

200 points

Original

Y
vl X
i
Perplexity: 2
Sten: 5000

Perplexity: 2
Step: 5,000

-~ Y -
3
ks
.
L
&
W
% LY LY
Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100
Step: 5000 Step: 5000 Step: 5000 Sten: 5000

&

B

L

Perplexity: 30
Step: 5000

Perplexity: 100
Step: 5,000

Perplexity: 5
Step: 5,000

Perplexity: 50
Step: 5000

What about random noise ?

Original

Perplexity: 2
Step: 5,000

Perplexity: 5
Step: 5,000

Perplexity: 30
Step: 5,000

Perplexity: 50
Step: 5,000

Perplexity: 100
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Empirical properties of tSNE (3)

RS

Catching Complex Geometries

Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100
Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000 Step: 5000

o O
o~ o 0P (©

Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100
Step: 5,000 Step: 5000 Step: 5000 Step: 5,000 Step: 5000

@)

Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100
Step: 5,000 Step: 5000 Step: 5000 Step: 5,000 Step: 5,000
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t-SNE: pros/cons

Properties
* good at preserving local distances (intra-cluster variance)

* not so good for global representation (inter-cluster variance)
* good at creating clusters of close points, bad at positioning clusters

wrt each other

Limitations
* importance of preprocessing: initialize with PCA and feature selection

plus log transform (non linear transform)
* percent of explained variance ? interpretation of the q distribution ?
* Lack of reproducibility due to stochastic optimization
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Uniform Manifold Approximation and Projection

Mclnnes, Healy, and Melville (2018)

For j in the k-neighborhood of i, define the conditional distribution
|1 - Xi15 —

i

pjji = exp (— ) with p; = min 1 — X2

and its symmetrized version

Dij = Pjli + Pilj — Pjlililj-

Rely on a generalized Student-distribution with a, b fitted on the data:

-1
g = (1+4lZ - Z|3)

UMAP solves the following problem:

min — loggii + (1 — p;i)log(1 — g;i)
Zepid ;Pl] 8 gij pij) log qij
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tSNE and UMAP scRNA data®

t-SNE

UMAP

SNEZ
A s aaa

/

¥

i

g

#

'

SNE1

UMAP1

Figure 21: tSNE + UMAP on raw data

fusing the Python module scanpy

A549
H1975
H2228
H&38
HCCB827
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tSNE and UMAP scRNA data’

PCA t-SNE UMAP

q q e A549
o Y % ® H1975
24 . <4 e H2228
B4 4 - ® Hs38

q q ﬁ ® HCcCs27

PC1 SNE1 UMAP1

Figure 22: tSNE + UMAP on log-transformed data

7using the Python module scanpy
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tSNE on large scRNA Gene Expression (cobak and Berens 201s)

a N =25000 b N=1306127
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Outline

@ Probabilistic Neighborhood Embedding (van Assel et al. 2022)
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Hidden Graph to structure observations

Consider W the adjacency matrix of a hidden random graph®

The graph Laplacian operator is the map L such that

~W; ifi % j
Yke[n] Wik otherwise .

L(W);; = {

L = L(W) has the following property:

VX €RYP, Y Wil — Xi? = te(XTLX).
ij

8we start with one connected component
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Conditional distribution of X on a graph Wy
Consider a Matrix Normal model with row and column dependencies
X | Wy ~ ./%/1/(0, Ly, 2—1),
The conditional density relates to the Gaussian kernel

1
K% = X)) = exp (=31% = X1

which can be generalized to translation invariant kernels:

P(X | Wy) o ] kG—xp)"xi,
(i)eln)?
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Conditional distribution of Z on a graph W,

Consider that the low-dimensional representation is also structured
according to a graph

Z| Wy, ~ .ﬂ./V(O, L', Iq),
with the Gaussian kernel for Z
1
KZ-7) =ew (17 - 21} ).
The Conditional distribution of Z | W is

Pz Wy« [] kz—zp"e
(L.)eln]?
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Embedding with Graph Coupling

Couple the 2 hidden graphs Wy
and Wy in a probabilisticway by [ X o
matching their posterior
distributions:

PX = P(Wy | X)

Q” =P(Wz | X;2)
~> Z becomes a parameter to be ‘% 0%
estimated

PXZQZ

Probabilistic Coupling
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Graph Coupling with Z as a parameter

Consider the cross entropy between posteriors

Find the best low-dimensional representation such that the two graphs
match

Z(X) = arg mZin {%(PX,QZ)}
Connection with the KL between posteriors
KL(PX, Q%) = 7 (PX, Q%) — ¢ (PX, P¥)
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Conjugate priors and posteriors for hidden graphs

Consider a prior distribution for the hidden graph in the general form

Po(Wsm) o« GW)* Qp(w) [] ="

a=0 (L)eln]?

For the following priors family, we derive the posterior P (W | X; 7, k)

P ‘ Qu(W) Prior for W

i i ki
% Bernoulli IL; 1w« % <1+”ij> % <1+”ijkij>
D Unitary Fixed degree 1L ) M (1, :—’) M (1, %
&  Fixed Number of edges | [[,(W;)™" .« (n, HL) M (n, [”Z]k

myk; = mk(X; — X;) is the posterior strength of edges (normalized or not)

Mixing Prior distributions for coupling

Priors for Wy, W induce posteriors P%x, Q‘@Z matched with cross
entropy %(P‘@X, Q‘@Z)
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Model-based Neighbor Embedding

Choosing Py = % = D lead usto pp = — Z PII]:) logQiljD and
%]

D_ mik (X — X;) D_ mik(Z; — Z;)
T Y k(X — Xp) T Yty mek(Z — Zy)

We defined the generative model for SNE!. Similarly,

Algorithm  Input Similarity Latent Similarity Loss Function

SNE P,-? = % Qi]D = % _Zi;:j Pi}D longD

Sym-SNE B, = PP+ PP QOF = % ~Yis B, log OF

LargeVis ﬁ,? = P,? + P/!,«D Qg = % - Zi<j 1_35 log Qg + (2 - ﬁ,?) log(1 — Qg)
UMAP PP = Pf PR BIRE Qf = SR -3 PlogQf + (1- ) log(1 - )
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Conclusion

Thank you for your attention
Co-authors on this topic

* Poisson log-normal PCA: Stéphane Robin, Mahendra Maridassou,
Bastien Batardiére, Nicolas Jouvin

* Probabilistic t-SNE: Hugues van Assel, Franck Picard, Thibault
Espinasse, Eddie Aamari

Some code

* R/C++ package PLNmodels is on https://cran.r-project.org/

* Python/Pytorch package pyplnmodels is on https://pypi.org/

* Github repos of this presentation is available at
https://github.com/jchiquet/dimred_intro

Advertissing

https://computo.sfds.asso.fr/, an open diamond academic journal
& promoting reproducibility
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