Introduction to Dimensionality Reduction Some recents approches in statistics and machine learning

Julien Chiquet

UMR MIA Paris-Saclay, AgroParisTech, INRAE

May 25, 2023

https://jchiquet.github.io/

Outline

- 1 Introduction
- 2 Background: Geometric view of PCA
- 3 Reconstruction error approach
- 4 Generative models
- 6 Preserving pairwise relation
- 6 Probabilistic Neighborhood Embedding (Van Assel et al. 2022

Exploratory analysis of (modern) data sets

Assume a table with n individuals described by p features/variables

$$\mathbf{X}_{n \times p} = \frac{}{} \frac{}{} \mathbf{x}_{ij}$$

- genetics: variant j in genome i
- genomics: gene j in cell i
- ecology: species j in site j
- image: pixel j in image i
- etc.

Questions

Look for **patterns** or **structures** to summarize the data by

Challenges

- Large (n and p grows) and high dimensional (n grows but $\ll p$)
- Redundancy many variables may carry the same information
- Unsupervised: we don't (necessary) know what we are looking for
- Discrete: measures with counts are as common as with intensity

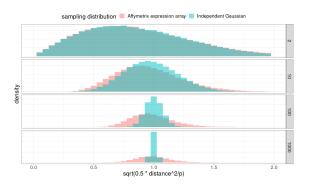
Dimensionality curse

Theorem (Folks theorem)

Let $\mathbf{x}_1, \dots, \mathbf{x}_n$ be in the *p*-hypercube with i.i.d. coordinates. Then,

$$p^{-1/2} \left(\max \|\mathbf{x}_i - \mathbf{x}_{i'}\|_2 - \min \|\mathbf{x}_i - \mathbf{x}_{i'}\|_2 \right) = 0 + \mathcal{O}\left(\sqrt{\frac{\log n}{p}}\right)$$

→ When p is large, all the points are almost equidistant



→ Hopefully, the data are not really leaving in p dimensions!

Dimension reduction: general goals

Main objective: find a **low-dimensional representation** that captures the "essence" of (high-dimensional) data

Application in Machine Learning

Preprocessing, Regularization

- · Compression, denoising, anomaly detection
- · Reduce overfitting in supervised learning

Application in Statistics/Data analysis

Better understanding of the data

- · descriptive/exploratory methods
- visualization (difficult to plot and interpret > 3d!)

See Chapter 20 in Murphy (2022) for a nice, recent introduction and Chapter 14 in Hastie et al. (2009) for reference.

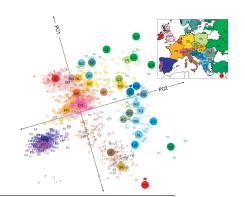
Example in genetics

Genetics variant in European population

500, 000 variants (Single Nucleotide Polymorphism) for 3000 individuals

- SNP: 90 % of human genetic variations
- coded as 0, 1 or 2 (# allels different against pop. reference)

Summarized with 2 features¹



- an extremely strong structure between individuals ("clustering")
- a very simple subspace where it is obvious ("dimension reduction")

Example in genomics

Genome-wide cell biology with single-cell RNAseq data

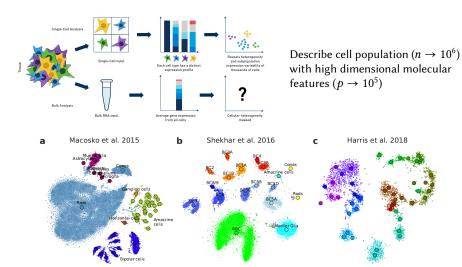


Figure 1: Successful t-SNE visualizations of sc-RNAseq data

Example in Image: MNIST

Famous database of 60,000 labeled handwritten digits (28 x 28 images)

Figure 2: Data Samples

X5

UMAP 2-dimensional visualization

Obtained via https://projector.tensorflow.org/, try it!

Dimension reduction: problem setup

Dimension Reduction Map

- Original data : $\{\mathbf{x}_1, \dots, \mathbf{x}_n\} \in \mathbb{R}^p$
- Low dimensional data : $\{\mathbf{z}_1, \dots, \mathbf{z}_n\} \in \mathbb{R}^q, q \ll p$
- Space \mathbb{R}^p of possibly high dimension: $n \ll p$

Construct a map Φ from \mathbb{R}^p into a \mathbb{R}^q with $q \ll p$:

$$\Phi: \left\{ \begin{array}{c} \mathbb{R}^p \to \mathbb{R}^q, q \ll p \\ \mathbf{x} \mapsto \Phi(\mathbf{x}) \triangleq \mathbf{z} \end{array} \right.$$

 \rightsquigarrow How should we design/construct Φ ?

Criterion

- · Geometrical approach
- Reconstruction error
- Relationship preservation

Form of the map Φ

- Linear or non-linear?
- · interpretability and versatility?
- high or low computational resource?

Outline

- 1 Introduction
- 2 Background: Geometric view of PCA
- 3 Reconstruction error approach
- 4 Generative models
- 6 Preserving pairwise relations
- 6 Probabilistic Neighborhood Embedding (Van Assel et al. 2022

Cloud of observation in \mathbb{R}^p and Inertia

Individuals in the variable space \mathbb{R}^p

Cloud **X** is centered around $\bar{\mathbf{x}} = \sum_{i=1}^{n} \mathbf{x}_i / n$

$$\mathbf{X}^{c} = \begin{pmatrix} x_{11} - \bar{x}_{1} & \dots & x_{1j} - \bar{x}_{j} & \dots & x_{1p} - \bar{x}_{p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{i1} - \bar{x}_{1} & \dots & x_{ij} - \bar{x}_{j} & \dots & x_{ip} - \bar{x}_{p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{n1} - \bar{x}_{1} & \dots & x_{nj} - \bar{x}_{j} & \dots & x_{np} - \bar{x}_{p} \end{pmatrix}$$

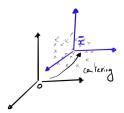


Figure 3: Example in \mathbb{R}^3

Total Inertia I_T as a measure of information

Distances to the center of the cloud \propto the total empirical variance

$$I_T = \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^p (x_{ij} - \bar{x}_j)^2 = \frac{1}{n} \sum_{j=1}^n \operatorname{dist}^2(\mathbf{x}_i, \bar{\mathbf{x}}) = \sum_{j=1}^p \mathbb{V}(\mathbf{x}^j) = \operatorname{trace}(\hat{\mathbf{\Sigma}})$$

→ Good representation has large inertia (much variability)

aempirical mean, barycentrum, center of inertia

Geometric view in a nutshell

Consider collection of orthogonal axes (with dimension =1), then

$$I_T = I_{\Delta_1} + I_{\Delta_2} + \cdots + I_{\Delta_p}$$

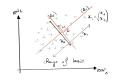
PCA is matrix factorisation (Hotelling 1933)

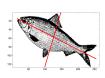
$$\hat{\boldsymbol{\Sigma}} = \mathbf{V}\boldsymbol{\Lambda}\mathbf{V}^{\top}, \quad \mathbf{V} = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2, & \dots & \mathbf{v}_p \end{pmatrix}, \quad \boldsymbol{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_p)$$

V are known as the loadings

Interpretation in \mathbb{R}^p

V describes a new orthogonal basis and a rotation of data in this basis





→ PCA is an appropriate rotation on axes that maximizes the variance

Unifying view of variables and individuals

In the new basis $\{v_1, \dots, v_p\}$, coordinates of i (a.k.a. scores) are

$$\mathbf{c}_i^\top = (\mathbf{x}_i - \bar{\mathbf{x}})^\top \mathbf{V} = \mathbf{X}_i^c \mathbf{V}, \quad \mathbf{c}_i \in \mathbb{R}^p.$$

In the variable space \mathbb{R}^n , new variables (factors) are formed by linear combinations of the original variables: the **principal components** (PC)

$$\mathbf{f}_k = \sum_{j=1}^p v_{kj}(\mathbf{x}^j - \bar{x}_j) = \mathbf{X}^c \mathbf{v}_k, \quad \mathbf{f}_k \in \mathbb{R}^n$$

The matrix of PC connects individual coordinates to latent factors:

$$PC = \mathbf{X}^{c}\mathbf{V} = \begin{pmatrix} \mathbf{f}_{1} & \mathbf{f}_{2} & \dots & \mathbf{f}_{p} \end{pmatrix} = \begin{pmatrix} \mathbf{c}_{1}^{\top} \\ \mathbf{c}_{2}^{\top} \\ \dots \\ \mathbf{c}_{n}^{\top} \end{pmatrix}$$

--- Everything can be interpreted on a single plot, called the biplot

Reconstruction formula

Recall that $\mathbf{F} = (\mathbf{f}_1, \dots, \mathbf{f}_p)$ is the matrix of Principal components. Then,

- $\mathbf{f}_k = \mathbf{X}^c \mathbf{v}_k$ for projection on axis k
- $\mathbf{F} = \mathbf{X}^c \mathbf{V}$ for all axis.

Using orthogonality of V, we get back the original data as follows, without loss (V^T performs the inverse rotation of V):

$$\mathbf{X}^c = \mathbf{F}\mathbf{V}^{\top}$$

We obtain an approximation $\hat{\mathbf{X}}^c$ (compression) of the data \mathbf{X}^c by considering a subset \mathcal{S} of PC, typically $\mathcal{S}=1,\ldots,q$ with $q\ll p$.

$$\hat{\mathbf{X}}^c = \mathbf{F}_q \mathbf{V}_q^\top = \mathbf{X}^c \mathbf{V}_q \mathbf{V}_q^\top$$

 \rightsquigarrow This is a rank-q approximation of **X** (captured by the first q axes).

Single-Cell data analysed with PCA

Toy single-cell RNA data set (https://github.com/LuyiTian/sc_mixology/)

The dataset scRNA contains the counts of the 500 most varying transcripts (tens of thousands) in the mixtures of 5 cell lines for a total of 3918 cells in human liver (obtained with standard 10x scRNAseq Chromium protocol).

	KRT81	AKR1B10	LCN2	AKR1C2	ALDH1A1	AGR2	AKR1C3	GPX2
Lib90_00000	6	2	43	4	2	4	3	0
Lib90_00001	38	16	175	30	8	19	5	25
Lib90_00002	5	6	3	3	1	0	3	4

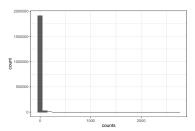


Figure 4: raw counts

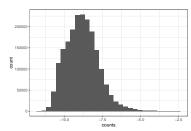
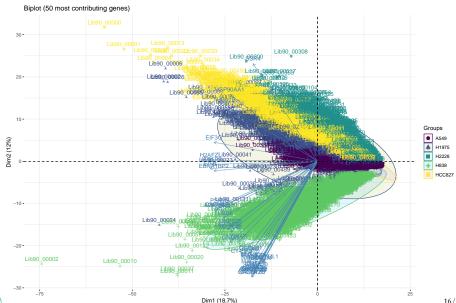


Figure 5: log/total-counts normalization

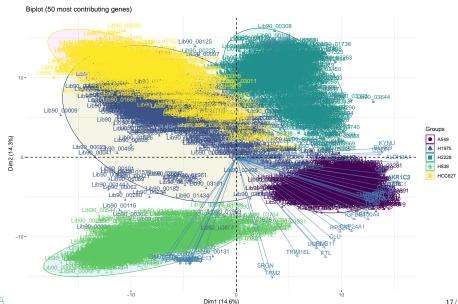
Single-Cell data analysed with PCA

Raw data



Single-Cell data analysis with PCA

Normalized data



MNIST data analysed with PCA

Compression/projection

Project 5 samples on the first $\{1, 2, 10, 20, 100, 784\}$ axes

Beyond PCA and linear methods

Limitations

Robust but,

- badly shaped for complex geometries (like multiscale properties)
- Fails with Count or Skew data (hidden Gaussian assumption)

Ideas

- Modify the model by playing with the reconstruction error
- Gain in versatility with probabilistic/model-based approaches
- Focus on relationship preservation to keep local characteristics
- Go non-linear by transforming the input space or amending the map $\Phi:\mathbb{R}^p \to \mathbb{R}^q$

Challenges

- · tradeoff between interpretability and versatility
- tradeoff between high or low computational resource

Outline

- 1 Introduction
- 2 Background: Geometric view of PCA
- 3 Reconstruction error approach
- 4 Generative models
- **5** Preserving pairwise relation
- 6 Probabilistic Neighborhood Embedding (Van Assel et al. 2022

Reconstruction error approach: principle

Find maps Φ and $\tilde{\Phi}$ in a given family (e.g, linear, constraint on parameters, etc.), minimizing an error between ${\bf x}$ and $\hat{{\bf x}}=\tilde{\Phi}(\Phi({\bf x}))$

• **Distance** between **X** and $\hat{\mathbf{X}}$, e.g, sum of squares:

$$\epsilon^{\text{SSQ}}(\mathbf{X}, \hat{\mathbf{X}}) = \|\mathbf{X} - \hat{\mathbf{X}}\|_F^2 = \sum_{i=1}^n \|\mathbf{x}_i - \tilde{\Phi}(\Phi(\mathbf{x}_i))\|^2$$

• Divergence between distributions $\hat{p}_{\mathbf{X}}$ and $\hat{p}_{\hat{\mathbf{X}}}$ of \mathbf{X}_i and $\hat{\mathbf{X}}_i$

$$D_{\mathsf{KL}}\left(\hat{p}_{\mathbf{X}}, \hat{p}_{\hat{\mathbf{X}}}\right) = -\sum_{i} \hat{p}_{\mathbf{X}_{i}} \log \left(\frac{\hat{p}_{\mathbf{X}_{i}}}{\hat{p}_{\hat{\mathbf{X}}_{i}}}\right)$$

• **Log-likelihood** of a parametric model p_{θ} , with $\hat{\mathbf{X}} = f(\theta)$:

$$-\log p_{\theta}(\mathbf{X}) = -\sum_{i=1}^{n} \log p_{\theta}(\mathbf{X}_i)$$

Another interpretation of PCA

PCA model

Let V_q be a $p \times q$ matrix whose columns are of q orthonormal vectors.

$$\Phi(\mathbf{x}) = \mathbf{V}_q^{\top}(\mathbf{x} - \boldsymbol{\mu}) = \mathbf{z}, \quad \hat{\mathbf{x}} = \tilde{\Phi}(\mathbf{z}) = \boldsymbol{\mu} + \mathbf{V}_q \mathbf{z}.$$

→ Model with Linear assumption + ortho-normality constraints

PCA reconstruction error

Solution (explicit)

- μ is the empirical mean, \mathbf{V}_q eigenvectors of the empirical covariance
- In practice: SVD of the centered matrix $\mathbf{X}^c = \mathbf{U}_q \mathbf{D}_q \mathbf{V}_q^{\top} = \mathbf{F}_q \mathbf{V}_q^{\top}$

Non-negative Matrix Factorization (Sra and Dhillon 2005)

Assume that **X** contains only non-negative entries (i.e. ≥ 0).

Model: Linearity of Φ plus non-negativity constraints:

$$\hat{\mathbf{X}} \approx \underbrace{\mathbf{X} \mathbf{V}_q}_{\mathbf{F}_q} \mathbf{V}_q^\top, \text{ s.c. } \mathbf{F}_q, \mathbf{V}_q \text{ has non-negative entries.}$$

· Least-squares loss:

$$\hat{\mathbf{X}}^{\mathsf{ls}} = \underset{\mathbf{F} \in \mathcal{M}(\mathbb{R}_{+})_{n,q}}{\text{arg min}} \|\mathbf{X} - \mathbf{F} \mathbf{V}^{\top}\|_{F}^{2},$$

$$\mathbf{V} \in \mathcal{M}(\mathbb{R}_{+})_{p,q}$$

• Poisson likelihood for \mathbf{X}_{ij} with intensity $\lambda_{ij}^q = (\mathbf{F}_q \mathbf{V}_q^\top)_{ij} \geq 0$:

$$\hat{\mathbf{X}}^{\text{poisson}} = \underset{\mathbf{F} \in \mathcal{M}(\mathbb{R}_{+})_{n,q}}{\arg \max} \sum_{i,j} x_{ij} \log(\lambda_{ij}^{q}) - \lambda_{ij}^{q}.$$

$$\mathbf{v} \in \mathcal{M}(\mathbb{R}_{+})_{n,q}$$

Kernel-PCA (Schölkopf, Smola, and Müller 1998)

Principle: non linear transformation of \mathbf{x} prior to linear PCA

- 1 Project the data into a higher space where it is linearly separable
- 2 Apply PCA to the transformed data

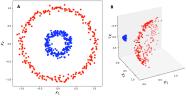


Figure 6: Transformation $\Psi: \mathbf{x} \to \Psi(\mathbf{x})$ (illustration in presence of existing labels)

Model

Assume a non linear transformation $\Psi(\mathbf{x}_i)$ where $\Psi: \mathbb{R}^p \to \mathbb{R}^n$, then perform PCA, with \mathbf{V}_q a $n \times q$ orthonormal matrix

$$\Phi(\mathbf{x}) = \mathbf{V}_q^{\top} \Psi(\mathbf{x} - \boldsymbol{\mu}) = \mathbf{z}$$

Choice of the transformation

All relationships are described in terms of scalar products between $(\mathbf{x}_i, \mathbf{x}_{i'})$:

$$K = k(\mathbf{x}_1, \mathbf{x}_2) = (\Psi(\mathbf{x})_i, \Psi(\mathbf{x}_{i'})) = \Psi(\mathbf{x}_i)^\top \Psi(\mathbf{x}_{i'}),$$

where the kernel *K* is a symmetric positive definite function.

Some common kernels

Polynormial:
$$k(\mathbf{x}_i, \mathbf{x}_{i'}) = (\mathbf{x}_i^{\top} \mathbf{x}_{i'} + c)^d$$

Gaussian:
$$k(\mathbf{x}_i, \mathbf{x}_{i'}) = \exp \frac{-\|\mathbf{x}_i - \mathbf{x}_{i'}\|^2}{2\sigma^2}$$

Laplacian kernel:
$$k(\mathbf{x}_i, \mathbf{x}_{i'}) = \exp \frac{-\|\mathbf{x}_i - \mathbf{x}_{i'}\|}{\sigma}$$

★ Kernel PCA suffers from the choice of the Kernel

Other methods

Linear models with other constraints

Let \mathbf{V}_q be a $p \times q$ matrix and $\mathbf{z} \in \mathbb{R}^q$

$$\hat{\mathbf{x}} = \tilde{\Phi}(\mathbf{z}) = \boldsymbol{\mu} + \sum_{j=1}^{q} \tilde{z}^{j} \mathbf{V}^{j} = \boldsymbol{\mu} + \mathbf{V}_{q} \mathbf{z}$$

Apply other constraints on V and or the factor/representation \boldsymbol{z}

- V_q sparse, possibly orthogonal: sparse PCA
- z sparse : Dictionary learning
- $(z^j, z^{j'})$ independent : **Independent Component Anaysis**
- \rightsquigarrow optimize square-loss $\|\mathbf{X} \hat{\mathbf{X}}\|_F^2$ to fit $\mu, \mathbf{V}, \mathbf{z}$

MNIST: original

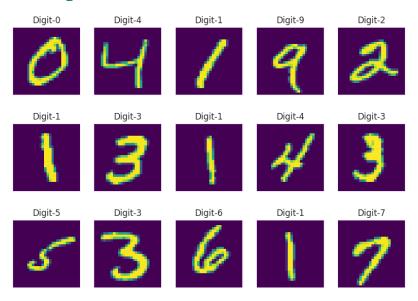


Figure 7: Original data: Subsample of 2,000 labeled handwritten digits

MNIST: PCA compression

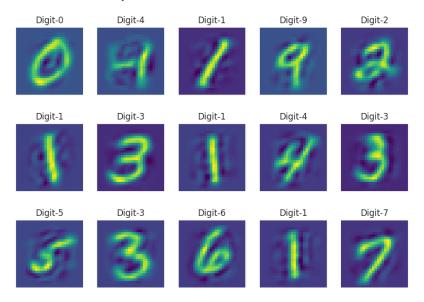


Figure 8: PCA with 40 components

MNIST: NMF compression

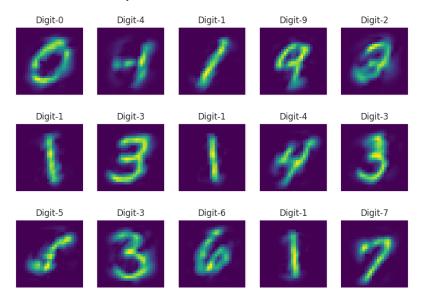


Figure 9: NMF with 40 components

MNIST: kernel-PCA compression

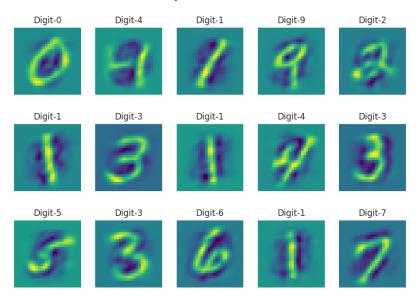


Figure 10: Kernel-PCA with linear kernel and 40 components

MNIST: ICA compression

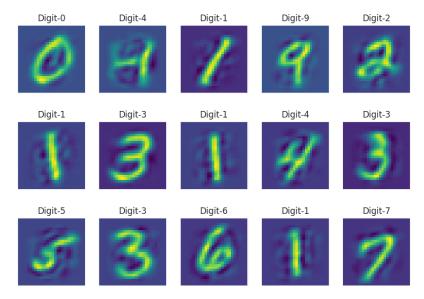


Figure 11: ICA

MNIST: dictionnary learning

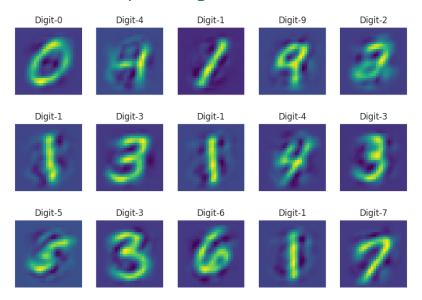


Figure 12: Dictionnary Learning with 25 components

Code using sklearn

```
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA, NMF, KernelPCA, FastICA, MiniBatchDictionaryLearning
mnist = pd.read_csv('data/mnist_sample.csv')
labels = mnist.iloc[:,0]
digits = mnist.iloc[:,1:mnist.shape[1]]
## PCA
pca = PCA(n components=40, random state=0, whiten=True)
pca.fit(digits)
digits PCA = pca.inverse transform(pca.transform(digits))
## NMF
nmf = NMF(n components=40, random state=0)
nmf.fit(digits)
digits NMF = nmf.inverse transform(nmf.transform(digits))
## Kernel-PCA
kpca = KernelPCA(n components=40, kernel='linear', random state=0, fit inverse transform=7
kpca.fit(digits)
digits kPCA = kpca.inverse transform(kpca.transform(digits))
# [...]
```

Outline

- Introduction
- 2 Background: Geometric view of PCA
- 3 Reconstruction error approach
- 4 Generative models
- **5** Preserving pairwise relation
- 6 Probabilistic Neighborhood Embedding (Van Assel et al. 202:

Probabilistic Gaussian PCA (Tipping and Bishop 1999)

Generative model

pPCA is a special factor model with parameter $\theta = (C, \sigma)$:

$$\begin{array}{ll} \text{latent space} & \mathbf{Z}_i \quad \text{i.i.d.} & \mathbf{Z}_i \sim \mathcal{N}(\mathbf{0}_q, \mathbf{I}_q) \\ \text{observation space} & \mathbf{X}_i | \mathbf{Z}_i \quad \text{indep.} & \mathbf{X} | \mathbf{Z}_i \sim \mathcal{N}\left(\boldsymbol{\mu} + \mathbf{C}\mathbf{Z}, \sigma^2 \mathbf{I}_n\right) \end{array}$$

By direct integration², the marginal distribution of the observation is

$$p_{\theta}(\mathbf{X}_i) = \int_{\mathbb{R}_a} p_{\theta}(\mathbf{X}_i | \mathbf{Z}_i) \, p(\mathbf{Z}_i) d\mathbf{Z}_i = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad \boldsymbol{\Sigma} = \mathbf{C} \mathbf{C}^{\top} + \sigma^2 \mathbf{I}_n$$

→ rank-q decomposition of the covariance matrix + noise.

²easy since everything is Gaussian

Estimation

Criterion: negative log-likelihood

$$-\sum_{i=1}^n \log p_{\theta}(\mathbf{X}_i) = \log |\mathbf{\Sigma}| + \operatorname{tr}\left(\mathbf{\Sigma}^{-1}\hat{\mathbf{\Sigma}}\right), \quad \hat{\mathbf{\Sigma}} = \frac{1}{n}\sum_i (\mathbf{x}_i - \bar{\mathbf{x}})(\mathbf{x}_i - \bar{\mathbf{x}})^{\top}$$

Maximum likelihood estimator

$$\hat{\mathbf{C}}^{\mathsf{mle}} = \mathbf{V}_q \left(\mathbf{\Lambda}_q - \hat{\sigma}^2 \mathbf{I}_n \right)^{1/2}, \quad \hat{\sigma}^2 = \frac{1}{p-q} \sum_{i=q+1}^p \lambda_i, \quad \hat{\mathbf{\Sigma}} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\top}$$

Latent position: posterior distribution

$$\mathbf{Z}_i \,|\, \mathbf{X}_i \sim \mathcal{N}\left(\mathbf{S}^{-1}\hat{\mathbf{C}}^\top(\mathbf{X}_i - \bar{\mathbf{x}}), \mathbf{S}^{-1}\hat{\boldsymbol{\sigma}}^2\right), \quad \mathbf{S} = \left(\hat{\mathbf{C}}^\top\hat{\mathbf{C}} + \hat{\boldsymbol{\sigma}}^2\mathbf{I}_q\right)$$

When $\sigma^2 \to 0$, $\mathbb{E}(\mathbf{Z}_i|\mathbf{X}_i) \equiv$ orthogonal projection in the latent space.

Estimation: alternative

Expectation-Maximization

With $\mathcal{H}(p) = -\mathbb{E}_p(\log(p))$ the entropy of p,

$$\log p_{\theta}(\mathbf{X}) = \mathbb{E}[\log p_{\theta}(\mathbf{X}, \mathbf{Z}) \,|\, \mathbf{X}; \theta)] + \mathcal{H}[p_{\theta}(\mathbf{Z} \,|\, \mathbf{X}; \theta)]$$

EM requires to evaluate (some moments of) $p_{\theta}(\mathbf{Z} | \mathbf{X}; \theta)$

- E-step: evaluate $Q(\theta|\theta') = \mathbb{E}(\log \ell(\mathbf{X}, \mathbf{W}; \theta) | \mathbf{X}; \theta')$
- M-step: update θ by maximizing $Q(\theta|\theta')$

EM for pPCA

- E-step: update the latente position means $\mathbb{E}(\mathbf{Z}|\mathbf{X})$
- M-step: update the model parameters \mathbf{C}, σ^2

On-going: Fast JAX implementation by Hugo Gangloff, mixture of pPCA with Pierre Barbillon and MsC intern Pierre Brand

PCA for counts: poisson lognormal PCA

Generative Model (Chiquet, Mariadassou, and Robin 2018)

$$\begin{array}{ll} \text{latent space} & \mathbf{Z}_i & \text{i.i.d.} & \mathbf{Z}_i \sim \mathcal{N}(\mathbf{0}_q, \mathbf{I}_q) \\ \text{observation space} & \mathbf{X}_i | \mathbf{Z}_i & \text{indep.} & \mathbf{X} | \mathbf{Z}_i \sim \mathcal{P}\left(\exp\{\boldsymbol{\mu} + \mathbf{C}^\top \mathbf{Z}_i\}\right) \end{array}$$

Estimation: Issues

The marginal distribution is hard to compute, even numerically

$$p_{\theta}(\mathbf{X}_i) = \int_{\mathbb{R}_p} \prod_{i=1}^p p_{\theta}(X_{ij}|Z_{ij}) p_{\theta}(\mathbf{Z}_i) d\mathbf{Z}_i$$

- → no direct MLE possible
 - Posterior distribution of \mathbf{Z}_i has no close form
- ** no genuine application of EM possible

Variational inference (Chiquet, Mariadassou, and Robin 2021)

Variational approximation (Blei, Kucukelbir, and McAuliffe 2017)

• Use a proxy q_{ψ} of $p_{\theta}(\mathbf{Z} \,|\, \mathbf{X})$ minimizing a divergence in a class $\mathcal Q$

$$q_{\psi}(\mathbf{Z})^{\star} = \arg\min_{q \in \mathcal{Q}} D_{KL}(q(\mathbf{Z}), p(\mathbf{Z}|\mathbf{Y})), \quad D_{KL}(p, q) = \mathbb{E}_q \left[\log \frac{q(z)}{p(z)} \right].$$

maximize the ELBO (Evidence Lower BOund)

$$J(\theta, \psi) = \log p_{\theta}(\mathbf{Y}) - KL[q_{\psi}(\mathbf{Z}) || p_{\theta}(\mathbf{Z}|\mathbf{Y})] = \mathbb{E}_{\psi}[\log p_{\theta}(\mathbf{Y}, \mathbf{Z})] + \mathcal{H}[q_{\psi}(\mathbf{Z})]$$

Variational EM for Poisson-lognormal PCA (PLN-PCA)

Consider Q the class of diagonal multivariate Gaussian distributions.

The ELBO $J(\theta, \psi)$ hat close-form and is bi-concave.

- E-step: solve in ψ for given θ
- M-step: solve in θ for given ψ

Model selection and Visualization for PLN-PCA

Selection of number of components (rank *k*)

Use likelihood lower bound in information criteia, e.g,

$$\hat{k} = \arg\max_{k} \mathsf{vBIC}_{k}$$
 with $\mathsf{vBIC}_{k} = J(\hat{\pmb{\beta}}, \tilde{p}) - \frac{1}{2}p(d+k)\log(n)$

Visualization: non-nested subspaces (≠ Gaussian PCA)

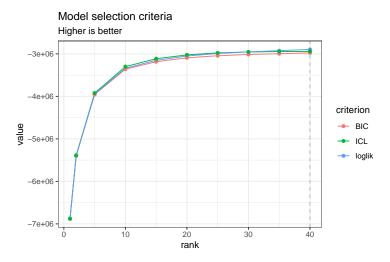
For the selected dimension \hat{k} , compute the estimated latent positions $\mathbb{E}_q(\mathbf{Z}_i)$ and perform PCA

Goodness of fit: deviance based criterion

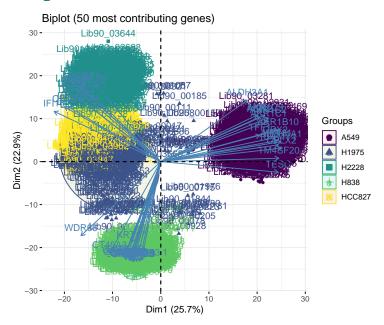
For $\ell_k = \log \mathbb{P}(\mathbf{X}; \lambda^{(k)})$ the Poisson likelihood,

$$R_k^2 = \frac{\ell_k - \ell_0}{\ell_{\max} - \ell_0}, \quad \text{with } \lambda_{ij}^{(k)} = \exp\left(\mathbb{E}_q(Z_{ij}^{(k)})\right), \quad \lambda_{ij}^{\max} = Y_{ij}.$$

Poisson-lognormal PCA for the scRNA data set



Poisson-lognormal PCA for the scRNA data set



Variational Auto-Encoders (Kingma and Welling 2013)

Highly non-linear model

Find Φ and $\tilde{\Phi}$ with **two** neural-networks, controlling the error.

$$\epsilon(\mathbf{X}, \hat{\mathbf{X}}) = \sum_{i=1}^{n} \|\mathbf{x}_{i} - \tilde{\Phi}(\Phi(\mathbf{x}_{i}))\|^{2} + \text{regularization}(\Phi, \tilde{\Phi})$$

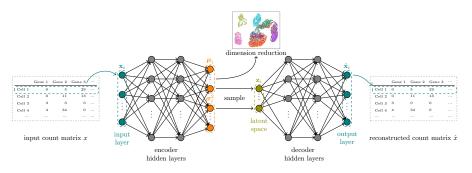


Figure 13: Figure by Hugo Gangloff

Variational Auto-Encoders

Decoder: Generative model

$$p_{\theta}(\mathbf{X}_i, \mathbf{Z}_i) = p_{\theta}(\mathbf{Z}_i) p_{\theta}(\mathbf{X}_i | \mathbf{Z}_i), \text{ with } \begin{cases} p_{\theta}(\mathbf{Z}_i) &= \mathcal{N}(0, \mathbf{I}_q), \\ p_{\theta}(\mathbf{X}_i | \mathbf{Z}_i) & \text{cond. likelihood.} \end{cases}$$

Encoder: Variational Inference model

The encoder approximate the posterior distribution with $q_{\psi}, \psi = \{\mu_i, \sigma^2\}$:

$$q_{\psi}(\mathbf{Z}_i|\mathbf{X}_i) = \mathcal{N}(\boldsymbol{\mu}_i, \boldsymbol{\sigma}_i^2 \mathbf{I}_q) \approx p_{\theta}(\mathbf{Z}_i|\mathbf{X}_i)$$

Optimization/training

Maximize a lower bound of the marginal log $p_{\theta}(\mathbf{X})$ (a.k.a the ELBO):

$$\log p_{\theta}(\mathbf{X}_i) \geq \mathcal{E}_{\theta,\psi}(\mathbf{X}_i) = \mathbb{E}_{q_{\psi}(\mathbf{Z}_i|\mathbf{X}_i)} \left[\log p_{\theta}(\mathbf{X}_i|\mathbf{Z}_i)\right] - D_{KL}(q_{\psi}(\mathbf{Z}_i|\mathbf{X}_i)||p_{\theta}(\mathbf{Z}_i))$$

Variational Auto-Encoders

Likelihoods relevent for count data

- Data scaled to [0,1] + Continuous Bernoulli (CB) likelihood (Wang and Gu 2018)
- (Zero Inflated) Negative Binomial (ZINB) likelihood (Dony et al. 2020)
- (Zero Inflated) Poisson likelihood (tried this with Hugo Gangloff)

Let $\lambda \in (\mathbb{R}_*^+)^p$ and $\rho \in [0,1]^p$ be the outputs of the decoder,

$$p_{\theta}(\mathbf{x}|\mathbf{z}) = \prod_{j=1}^{p} \begin{cases} \rho_j + (1-\rho_j)p_{\theta}^{Poiss}(x_{m,n}|\lambda_n), & x_{ij} = 0, \\ (1-\rho_j)p_{\theta}^{Poiss}(x_{ij}|\lambda_n), & x_{ij} > 0. \end{cases}$$

Promising works and questions

- Grønbech et al. (2020): Gaussian Mixture VAE
- · Seninge et al. (2021): Semi-supervised VA
- · Us: Connexion with traditional variational inference
- Us: Use as block in wider model-based approches

Variational Auto-Encoders on scRNA data³

- encoder dimensions: [256, 128, 64]
- decoder dimensions: [64, 128, 256]
- ADAM with learning rate = 1e-3

Negative-Binomial distribution

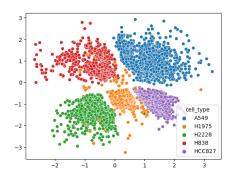


Figure 14: Negative Binomial

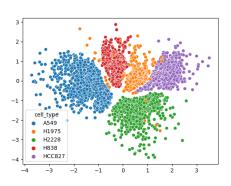


Figure 15: Zero-Inflated Negative Binomial

³based on code by Hugo Gangloff

Variational Auto-Encoders on scRNA data⁴

- encoder dimensions: [256, 128, 64]
- decoder dimensions: [64, 128, 256]
- ADAM with learning rate = 1e-3

Poisson distribution

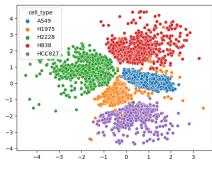


Figure 16: Poisson

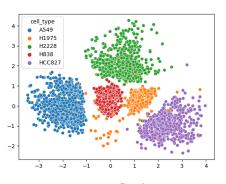


Figure 17: Zero-Inflated Poisson

⁴based on code by Hugo Gangloff

Outline

- Introduction
- 2 Background: Geometric view of PCA
- 3 Reconstruction error approach
- 4 Generative models
- **5** Preserving pairwise relations
- 6 Probabilistic Neighborhood Embedding (Van Assel et al. 2022

Preserving pairwise relations: principle

Consider an $n \times n$ (dis)similarity matrix associated to $\mathbf{x}_i \in \mathbb{R}^p$, measuring pairwise relations $\mathcal{R}(\bullet, \bullet')$, using one among

- · distances,
- · kernels,
- · inner products,
- · probability distributions.

Goal: find $\mathbf{z}_i \in \mathbb{R}^q$ while preserving the (dis)similarities in the latent space

Preserve local properties

Find a map Φ from $\mathbb{R}^p \to \mathbb{R}^q$ such that

$$\mathcal{R}(\mathbf{x}_i, \mathbf{x}_{i'}) \sim \mathcal{R}'(\mathbf{z}_i, \mathbf{z}_{i'})$$

 $\mbox{\ensuremath{\leadsto}}$ preserve $\ensuremath{\mathcal{R}}$ both in high and low dimensional spaces to catch complex geometries

Multidimensional scaling

a.k.a Principale Coordinates Analysis

Classical Multidimensional Scalings

Preserve similarities in terms inner product:

$$\mathsf{Stress}^{cMDS}(\mathbf{z}_i) = \sum_{i \neq i'} \left((\mathbf{x}_i - \boldsymbol{\mu})^\top (\mathbf{x}_i - \boldsymbol{\mu}) - \mathbf{z}_i^\top \mathbf{z}_{i'} \right)^2,$$

Metric Multidimensional Scalings

Remarking that cMDS amount to preserve dissimilarities in terms of Euclidean distance, use

$$Stress(\mathbf{z}_1, \dots, \mathbf{z}_n) = \sum_{i \neq i'} (d_{ii'} - \|\mathbf{z}_i - \mathbf{z}_{i'}\|)^2,$$

→ Generalize to other dissimilarities/distances or stress functions

Some Embedding methods

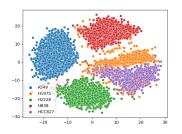
Isomap (Balasubramanian and Schwartz 2002)

- Build a k-nearest neighbor graph with adjacency matrix W
- Weight edges by $W_{ii'} = \|\mathbf{x}_i \mathbf{x}_{i'}\|$
- Compute the shortest path distance
- Embeds the distance with MDS.

Laplacian Eigenmaps (Belkin and Niyogi 2003)

- Build a k-nearest neighbor graph with adjacency matrix W
- Weight edges with Gaussian kernel $W_{ii'} = \exp(\|\mathbf{x}_i \mathbf{x}_{i'}\|^2/\sigma^2)$
- Compute the graph Laplacian $\mathbf{L} = \mathbf{D} \mathbf{W}$ with \mathbf{D} diagonal with degrees
- Embeddings are obtained with the first eigenvectors associated to positive eigenvalues of L.

Classical embeddings on scRNA data set⁵



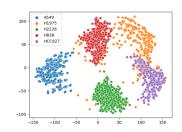


Figure 18: Multidimensional Scaling

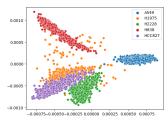


Figure 20: Laplacian Eigenmap

⁵using sklearn.manifold

Stochastic Neighbor Embedding (SNE) (Hinton and Roweis 2002)

High dimensional space

Let $(\mathbf{x}_1, \dots, \mathbf{x}_n)$ be the original points in \mathbb{R}^p , and measure similarities by

$$p_{ij} = (p_{j|i} + p_{i|j})/2n$$
, with $p_{j|i} = \frac{\exp(-\|\mathbf{x}_j - \mathbf{x}_i\|^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|\mathbf{x}_k - \mathbf{x}_i\|^2/2\sigma_i^2)}$

- preserves relations with close neighbors
- σ_i adjusts to local densities (neighborhood of i)

Perplexity

A smoothed effective number of neighbors:

$$Perp(p_i) = 2^{H(p_i)}, \qquad H(p_i) = -\sum_{j=1}^{n} p_{j|i} \log_2 p_{j|i}$$

 $ightharpoonup \sigma_i$ found by binary search to match a user-defined perplexity for p_i

tSNE and Student / Cauchy kernels (Maaten and Hinton 2008)

Similarities in the low dimension space

Let $(\mathbf{z}_1, ..., \mathbf{z}_n)$ be the points in the low-dimensional space $\mathbb{R}^{q=2}$

(SNE)
$$q_{i|j} = \frac{\exp(-\|\mathbf{z}_i - \mathbf{z}_j\|^2)}{\sum_{k \neq i} \exp(-\|\mathbf{z}_k - \mathbf{z}_j\|^2)}$$
$$(\mathbf{t} - \mathbf{SNE}) \quad q_{i|j} = \frac{(1 + \|\mathbf{z}_i - \mathbf{z}_j\|^2)^{-1}}{\sum_{k \neq i} (1 + \|\mathbf{z}_i - \mathbf{z}_k\|^2)^{-1}}$$

** t-SNE robustifies Gaussian kernel by using Student(1) (Cauchy) kernels

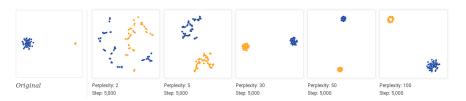
Optimization

Criterion – Kullback-Leibler between p and $q:C(\mathbf{z})=\sum_{ij}KL(p_{ij},q_{ij})$ Algorithm – adaptive stochastic gradient initialized by $\mathcal{N}(0,\epsilon I_q)$ Initiatization – reduce original data with PCA then initialized by $\mathcal{N}(0,\epsilon I_q)$

Empirical properties of tSNE (1)

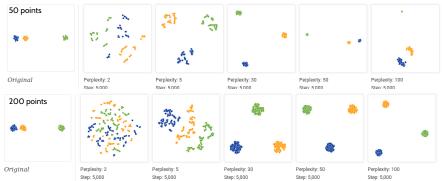
Effect of Hyperparameters : Perplexity

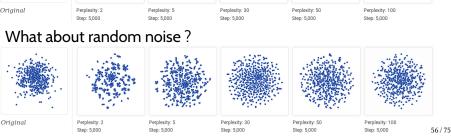
tSNE does not account for heteroscedasticity



Empirical properties of tSNE (2)

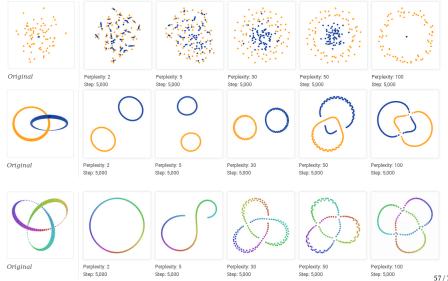
tSNE does not account for between-cluster distance





Empirical properties of tSNE (3)

Catching Complex Geometries



57 / 75

t-SNE: pros/cons

Properties

- good at preserving local distances (intra-cluster variance)
- not so good for global representation (inter-cluster variance)
- good at creating clusters of close points, bad at positioning clusters wrt each other

Limitations

- importance of preprocessing: initialize with PCA and feature selection plus log transform (non linear transform)
- percent of explained variance ? interpretation of the q distribution ?
- Lack of reproducibility due to stochastic optimization

Uniform Manifold Approximation and Projection

McInnes, Healy, and Melville (2018)

For j in the k-neighborhood of i, define the conditional distribution

$$p_{j|i} = \exp\left(-\frac{\|X_i - X_j\|_2^2 - \rho_i}{\sigma_i}\right) \quad \text{ with } \rho_i = \min_{j \neq i} \|X_i - X_j\|^2$$

and its symmetrized version

$$p_{ij} = p_{j|i} + p_{i|j} - p_{j|i}p_{i|j}.$$

Rely on a generalized Student-distribution with *a*, *b* fitted on the data:

$$q_{ij} = \left(1 + a\|Z_i - Z_j\|_2^{2b}\right)^{-1}$$

UMAP solves the following problem:

$$\min_{Z \in \mathbb{R}^{n \times d}} - \sum_{i < j} p_{ij} \log q_{ij} + (1 - p_{ij}) \log (1 - q_{ij})$$

tSNE and UMAP scRNA data⁶

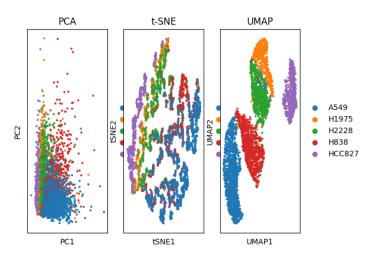


Figure 21: tSNE + UMAP on raw data

⁶using the Python module scanpy

tSNE and UMAP scRNA data⁷

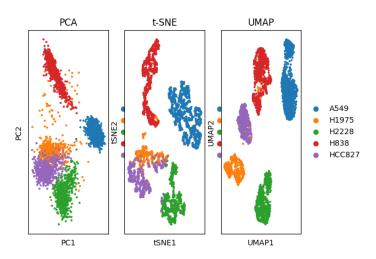
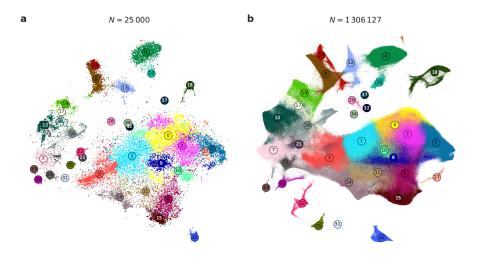


Figure 22: tSNE + UMAP on log-transformed data

⁷using the Python module scanpy

tSNE on large scRNA Gene Expression (Kobak and Berens 2018)



Outline

- 1 Introduction
- 2 Background: Geometric view of PCA
- 3 Reconstruction error approach
- 4 Generative models
- **5** Preserving pairwise relation
- 6 Probabilistic Neighborhood Embedding (Van Assel et al. 2022)

Hidden Graph to structure observations

Consider W the adjacency matrix of a hidden random graph⁸ The graph Laplacian operator is the map L such that

$$L(\mathbf{W})_{ij} = \begin{cases} -W_{ij} & \text{if } i \neq j \\ \sum_{k \in [n]} W_{ik} & \text{otherwise} \end{cases}.$$

 $L = L(\mathbf{W})$ has the following property:

$$\forall X \in \mathbb{R}^{n \times p}, \quad \sum_{i,j} W_{ij} \|X_i - X_j\|^2 = \operatorname{tr}(X^T L X).$$

⁸we start with one connected component

Conditional distribution of X on a graph W_X

Consider a Matrix Normal model with row and column dependencies

$$X \mid W_X \sim \mathcal{M} \mathcal{N} \bigg(0, L_X^{-1}, \Sigma^{-1} \bigg),$$

The conditional density relates to the Gaussian kernel

$$k(X_i - X_j) = \exp\left(-\frac{1}{2}||X_i - X_j||_{\Sigma}^2\right),$$

which can be generalized to translation invariant kernels:

$$\mathbb{P}(X \mid W_X) \propto \prod_{(i,j) \in [n]^2} k(\mathbf{X}_i - \mathbf{X}_j)^{W_{X,ij}}.$$

Conditional distribution of Z on a graph W_Z

Consider that the low-dimensional representation is also structured according to a graph

$$Z \mid W_Z \sim \mathcal{M} \mathcal{N} \bigg(0, L_Z^{-1}, I_q \bigg),$$

with the Gaussian kernel for Z

$$k(Z_i - Z_j) = \exp\left(-\frac{1}{2}\|Z_i - Z_j\|_{I_q}^2\right),$$

The Conditional distribution of $Z \mid W_Z$ is

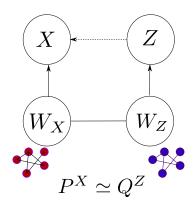
$$\mathbb{P}(Z \mid W_Z) \propto \prod_{(i,j) \in [n]^2} k(Z_i - Z_j)^{W_{Z,ij}}$$

Embedding with Graph Coupling

Couple the 2 hidden graphs W_X and W_Z in a probabilistic way by matching their posterior distributions:

$$\mathbf{P}^X = \mathbb{P}(W_X \mid X)$$
$$\mathbf{O}^Z = \mathbb{P}(W_Z \mid X; Z)$$

 \rightsquigarrow Z becomes a parameter to be estimated



Probabilistic Coupling

Graph Coupling with Z as a parameter

Consider the cross entropy between posteriors

$$\mathscr{H}(\mathbf{P}^X, \mathbf{Q}^Z) = -\mathbb{E}_{W_X \sim \mathbf{P}^X} \left(\log \mathbb{P}(W_Z = W_X \mid X; Z) \right)$$

Find the best low-dimensional representation such that the two graphs match

$$Z(X) = \arg\min_{Z} \left\{ \mathcal{H}(\mathbf{P}^{X}, \mathbf{Q}^{Z}) \right\}$$

Connection with the KL between posteriors

$$\mathsf{KL}\big(\mathbf{P}^X,\mathbf{Q}^Z\big) = \mathscr{H}\big(\mathbf{P}^X,\mathbf{Q}^Z\big) - \mathscr{H}\big(\mathbf{P}^X,\mathbf{P}^X\big)$$

Conjugate priors and posteriors for hidden graphs

Consider a prior distribution for the hidden graph in the general form

$$\mathbb{P}_{\mathcal{P}}(\mathbf{W};\boldsymbol{\pi}) \propto \underbrace{\mathcal{E}_{\boldsymbol{k}}(\mathbf{W})^{\boldsymbol{\alpha}}}_{\alpha=0} \Omega_{\mathcal{P}}(\mathbf{W}) \prod_{(i,j) \in [n]^2} \pi_{ij}^{W_{ij}}$$

For the following priors family, we derive the posterior $\mathbb{P}_{\mathscr{P}}(\mathbf{W} \mid X; \boldsymbol{\pi}, k)$

\mathscr{P}	$\Omega_{\mathscr{P}}(\mathbf{W})$	Prior for W		
${\mathscr B}$ Bernoulli	$\prod_{ij} 1_{W_{ij} \leq 1}$	$\mathscr{B}\left(\frac{\pi_{ij}}{1+\pi_{ij}}\right)$	$\mathscr{B}\left(\frac{\pi_{ij}k_{ij}}{1+\pi_{ij}k_{ij}}\right)$	
${\mathscr D}$ Unitary Fixed degree	$\prod_i 1_{W_{i+}=1}$	$\mathscr{M}\left(1, \frac{\pi_i}{\pi_{i+}}\right)$	$\mathcal{M}\left(1, \frac{[\pi k]_i}{[\pi k]_{i+}}\right)$	
$\operatorname{\mathscr{E}}$ Fixed Number of edges	$\prod_{ij}(W_{ij}!)^{-1}$	$\mathcal{M}\left(n,\frac{\pi}{\pi_{++}}\right)$	$\mathcal{M}\left(n, \frac{\pi k}{[\pi k]_{++}}\right)$	
$\pi_{ij}k_{ij} = \pi_{ij}k(X_i - X_j)$ is the posterior strength of edges (normalized or not)				

Mixing Prior distributions for coupling

Priors for W_X, W_Z induce posteriors $\mathbf{P}^{\mathscr{P}_{\chi}}, \mathbf{Q}^{\mathscr{P}_{Z}}$ matched with cross entropy $\mathscr{H}(\mathbf{P}^{\mathscr{P}_{\chi}}, \mathbf{Q}^{\mathscr{P}_{Z}})$

Model-based Neighbor Embedding

Choosing
$$\mathscr{P}_X=\mathscr{P}_Z=\mathscr{D}$$
 lead us to $\mathscr{H}_{D,D}=-\sum_{i\neq j}P^D_{ij}\log Q^D_{ij}$ and

$$P_{ij}^{D} = \frac{\pi_{ij}k(X_i - X_j)}{\sum_{\ell=1}^{n} \pi_{i\ell}k(X_i - X_\ell)}, \quad Q_{ij}^{D} = \frac{\pi_{ij}k(Z_i - Z_j)}{\sum_{\ell=1}^{n} \pi_{i\ell}k(Z_i - Z_\ell)}.$$

We defined the generative model for SNE!. Similarly,

Algorithm	Input Similarity	Latent Similarity	Loss Function
SNE	$P_{ij}^D = \frac{k_x(\mathbf{X}_i - \mathbf{X}_j)}{\sum_{\ell} k_x(\mathbf{X}_i - \mathbf{X}_{\ell})}$	$Q_{ij}^D = \frac{k_z(\mathbf{Z}_i - \mathbf{Z}_j)}{\sum_{\ell} k_z(\mathbf{Z}_i - \mathbf{Z}_{\ell})}$	$-\sum_{i\neq j} P_{ij}^D \log Q_{ij}^D$
Sym-SNE	$\overline{P}_{ij}^D = P_{ij}^D + P_{ji}^D$	$Q_{ij}^{E} = \frac{k_z(\mathbf{Z}_i - \mathbf{Z}_j)}{\sum_{\ell,t} k_z(\mathbf{Z}_\ell - \mathbf{Z}_t)}$	$-\sum_{i < j} \overline{P}_{ij}^D \log Q_{ij}^E$
LargeVis	$\overline{P}_{ij}^D = P_{ij}^D + P_{ji}^D$	$Q_{ij}^B = \frac{k_z(\mathbf{Z}_i - \mathbf{Z}_j)}{1 + k_z(\mathbf{Z}_i - \mathbf{Z}_j)}$	$-\sum_{i < j} \overline{P}_{ij}^D \log Q_{ij}^B + \left(2 - \overline{P}_{ij}^D\right) \log(1 - Q_{ij}^B)$
UMAP	$\widetilde{P}_{ij}^B = P_{ij}^B + P_{ji}^B - P_{ij}^B P_{ji}^B$	$Q_{ij}^{B} = \frac{k_z(\mathbf{Z}_i - \mathbf{Z}_j)}{1 + k_z(\mathbf{Z}_i - \mathbf{Z}_j)}$	$-\sum_{i < j} \widetilde{P}_{ij}^B \log Q_{ij}^B + \left(1 - \widetilde{P}_{ij}^B\right) \log(1 - Q_{ij}^B)$

Conclusion

Thank you for your attention

Co-authors on this topic

- Poisson log-normal PCA: Stéphane Robin, Mahendra Maridassou, Bastien Batardière, Nicolas Jouvin
- Probabilistic t-SNE: Hugues van Assel, Franck Picard, Thibault Espinasse, Eddie Aamari

Some code

- R/C++ package PLNmodels is on https://cran.r-project.org/
- Python/Pytorch package pyplnmodels is on https://pypi.org/
- Github repos of this presentation is available at https://github.com/jchiquet/dimred_intro

Advertissing

https://computo.sfds.asso.fr/, an open diamond academic journal promoting reproducibility

References I

- Balasubramanian, Mukund, and Eric L Schwartz. 2002. "The Isomap Algorithm and Topological Stability." *Science* 295 (5552): 7–7.
- Belkin, Mikhail, and Partha Niyogi. 2003. "Laplacian Eigenmaps for Dimensionality Reduction and Data Representation." *Neural Computation* 15 (6): 1373–96.
- Blei, David M, Alp Kucukelbir, and Jon D McAuliffe. 2017. "Variational Inference: A Review for Statisticians." *Journal of the American Statistical Association* 112 (518): 859–77.
- Chiquet, Julien, Mahendra Mariadassou, and Stéphane Robin. 2018. "Variational Inference for Probabilistic Poisson PCA." *The Annals of Applied Statistics* 12: 2674–98. http://dx.doi.org/10.1214/18-AOAS1177.
- ——. 2021. "The Poisson-Lognormal Model as a Versatile Framework for the Joint Analysis of Species Abundances." Frontiers in Ecology and Evolution 9. https://doi.org/10.3389/fevo.2021.588292.

References II

- Dony, Leander, Martin König, D Fischer, and Fabian J Theis. 2020. "Variational Autoencoders with Flexible Priors Enable Robust Distribution Learning on Single-Cell RNA Sequencing Data." In *ICML* 2020 Workshop on Computational Biology (WCB) Proceedings Paper. Vol. 37.
- Grønbech, Christopher Heje, Maximillian Fornitz Vording, Pascal N Timshel, Casper Kaae Sønderby, Tune H Pers, and Ole Winther. 2020. "scVAE: Variational Auto-Encoders for Single-Cell Gene Expression Data." *Bioinformatics* 36 (16): 4415–22.
- Hastie, Trevor, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. 2009. *The Elements of Statistical Learning: Data Mining, Inference, and Prediction.* Vol. 2. Springer.
- Hinton, Geoffrey E, and Sam Roweis. 2002. "Stochastic Neighbor Embedding." *Advances in Neural Information Processing Systems* 15.
- Hotelling, Harold. 1933. "Analysis of a Complex of Statistical Variables into Principal Components." *Journal of Educational Psychology* 24 (6): 417.

References III

- Kingma, Diederik P, and Max Welling. 2013. "Auto-Encoding Variational Bayes." *arXiv Preprint arXiv:1312.6114*.
- Kobak, Dmitry, and Philipp Berens. 2018. "The Art of Using t-SNE for Single-Cell Transcriptomics." *bioRxiv*. https://doi.org/10.1101/453449.
- Maaten, Laurens van der, and Geoffrey Hinton. 2008. "Visualizing Data Using t-SNE." *Journal of Machine Learning Research* 9: 2579–2605.
- McInnes, L., J. Healy, and J. Melville. 2018. "UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction." *Arxiv*, no. 1802.03426: 1–63. https://arxiv.org/abs/1802.03426.
- Murphy, Kevin P. 2022. *Probabilistic Machine Learning: An Introduction*. MIT Press. probml.ai.
- Schölkopf, Bernhard, Alexander Smola, and Klaus-Robert Müller. 1998. "Nonlinear Component Analysis as a Kernel Eigenvalue Problem." *Neural Computation* 10 (5): 1299–319.

References IV

- Seninge, Lucas, Ioannis Anastopoulos, Hongxu Ding, and Joshua Stuart. 2021. "VEGA Is an Interpretable Generative Model for Inferring Biological Network Activity in Single-Cell Transcriptomics." *Nature Communications* 12 (1): 1–9.
- Sra, Suvrit, and Inderjit Dhillon. 2005. "Generalized Nonnegative Matrix Approximations with Bregman Divergences." *Advances in Neural Information Processing Systems* 18.
- Tipping, M. E, and C. M Bishop. 1999. "Probabilistic Principal Component Analysis." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 61 (3): 611–22.
- Van Assel, Hugues, Thibault Espinasse, Julien Chiquet, and Franck Picard. 2022. "A Probabilistic Graph Coupling View of Dimension Reduction." In Advances in Neural Information Processing Systems.
- Wang, Dongfang, and Jin Gu. 2018. "VASC: Dimension Reduction and Visualization of Single-Cell RNA-Seq Data by Deep Variational Autoencoder." *Genomics, Proteomics & Bioinformatics* 16 (5): 320–31.

